Damping of giant resonances in asymmetric nuclear matter

نویسنده

  • R. Walke
چکیده

The giant collective modes in asymmetric nuclear matter are investigated within a dynamic relaxation time approximation. We derive a coupled dispersion relation and show that two sources of coupling appear: (i) a coupling of isoscalar and isovector modes due to different mean-fields acting and (ii) an explicit new coupling in asymmetric matter due to collisional interaction. We show that the latter one is responsible for a new mode arising besides isovector and isoscalar modes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Damping Rates of Hot Giant Dipole Resonances

The damping rate of hot giant dipole resonances (GDR) is investigated. Besides Landau damping we consider collisions and density fluctuations as contributions to the damping of GDR. Within the nonequilibrium Green’s function method we derive a non-Markovian kinetic equation. The linearization of the latter one leads to complex dispersion relations. The complex solution provides the centroid ene...

متن کامل

Deducing the nuclear matter incompressibility coefficient from data on isoscalar compression modes

Accurate assessment of the value of the incompressibility coefficient, K, of symmetric nuclear matter, which is directly related to the curvature of the equation of state (EOS), is needed to extend our knowledge of the EOS in the vicinity of the saturation point. We review the current status of K as determined from experimental data on isoscalar giant monopole and dipole resonances (compression...

متن کامل

Electromagnetic cross sections of double giant dipole resonances in 136Xe and 208Pb within the phonon damping model

The electromagnetic cross sections of the double giant dipole resonances (DGDR) in 136Xe and 208Pb are calculated using the strength functions obtained within the phonon damping model. The parameters of the model have been selected to describe reasonably well the single giant dipole resonance in these nuclei. The results are found in an overall agreement with the recent experimental data for th...

متن کامل

Relativistic mean-field dynamics of giant resonances

Models based on quantum hadrodynamics provide a consistent description of the nuclear many-body system in terms of interacting baryons and mesons. In the self-consistent mean-field approximation, the time-dependent model has been applied in the analysis of the dynamics of giant resonances. The calculated excitation energies and transition densities of isoscalar giant monopole resonances, restri...

متن کامل

Monopole giant resonances and nuclear compressibility in relativistic mean field theory

Isoscalar and isovector monopole oscillations that correspond to giant resonances in spherical nuclei are described in the framework of time-dependent relativistic mean-field (RMF) theory. Excitation energies and the structure of eigenmodes are determined from a Fourier analysis of dynamical monopole moments and densities. The generator coordinate method, with generating functions that are solu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998